Metastable phase relation and phase equilibria in the Cr₂O₃-Fe₂O₃ system

Y. MURAKAMI, A. SAWATA, Y. TSURU, K. AKIYAMA Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., Sachiura 1-8-1, Kanazawa-ku, Yokohama 236-8515, Japan E-mail: murakami@atrc.mhi.co.jp

In order to ascertain the metastable phase relation in the Cr_2O_3 -Fe₂O₃ system, the existing phases were investigated by X-ray analysis using samples obtained by heating the coprecipitated powders for 1 h at 600–1000°C. There was a metastable two-phase region of Cr_2O_3 -rich (CC) and Fe₂O₃-rich (FC) phases below about 940°C. Equilibrium state of 1:1 composition at 600–900°C was considered to be a single phase of the corundum solid solution. The metastable two-phase CC + FC region was suggested to appear probably due to the compositional inhomogeneity in the coprecipitated powders. © 2003 Kluwer Academic Publishers

1. Introduction

Phase diagram of the Cr₂O₃-Fe₂O₃ system and formation of the (Cr,Fe)₂O₃ solid solutions have been studied by many researchers [1-8]. A continuous solid solution with the corundum structure, (Cr,Fe)₂O₃, was reported to exist at 1300-1400°C [1, 2]. Music et al. [3] reported the existence of (Cr,Fe)₂O₃ at 1100°C and a two-phase region consisted of Cr₂O₃-rich corundum (abbreviated as CC) and Fe₂O₃-rich corundum (abbreviated as FC) phases at 900°C. Present authors [4] found that the two-phase CC + FC region existed in a compositional range from 35 to 80 mol% Fe_2O_3 at 600°C by measuring the composition dependence of d-spacing of 300 reflection of the corundum structure in this system. However, the maximum temperature of two-phase region is unknown. On the contrary, formation of a single solid solution phase below about 900°C was reported by several authors [5, 6]. Tsokov et al. [5] showed that the mechanical treatment of coprecipitated powders decreased the formation temperature of $(Cr, Fe)_2O_3$ to 350°C. Bhattacharya et al. [6] found the formation of (Cr,Fe)₂O₃ at 600°C in the sol-gel-derived powders. Thus, the question arises whether the two-phase CC + FC region observed in the coprecipitated powders [3, 4] is stable. Then, in this work, we have studied the phase relation in the Cr₂O₃-Fe₂O₃ system by heating the coprecipitated powders at 600-1000°C, showing the existence of metastable two-phase region. And moreover, we have investigated the phase equilibria of equimolar CrFeO₃ (1:1) composition at 600–900°C.

2. Experimental procedure

The raw materials used were $Cr(NO_3)_39H_2O$ and $Fe(NO_3)_39H_2O$ with 99.9% purity. The precipitates of mixed hydroxides were prepared by the chemical coprecipitation method [4]. These precipitates were heat-treated for 1 h at 600–1000°C in a platinum crucible

to ascertain the phase relation. Similarly, precipitates were heat-treated at 600, 800 and 900°C for 1–1000 h to study the phase equilibria of 1:1 composition. Phases were identified by X-ray diffraction (XRD) analyzing the crystal structure of powders heat-treated at each temperature using a MAC science M21XG diffractometer with monochromatized Cu K α radiation. In order to prove the existence of two phase region, d-spacing of 300 reflection of the corundum structure was determined by measuring exactly the diffraction angles of 300 XRD peaks using a step scanning technique [4]. Fourier transform infrared (FT-IR) spectra were recorded at room temperature by a FT-IR spectrometer (Nihonbunkou, model FT/IR-620), where the samples were pressed in KBr discs.

3. Results and discussion

3.1. Metastable phase relation

XRD profiles of the powders with 1:1 composition heattreated for 1 h at 600, 920, 930, 940 and 950°C are revealed in Fig. 1, showing 300 reflection peaks of the corundum structure. At this composition, two-phase mixture consisted of Cr₂O₃-rich corundum (CC) and Fe₂O₃-rich corundum (FC) solid-solution phases was observed at 600–930°C and a single corundum phase was observed at 940 and 950°C. In XRD profiles of samples heat-treated at 940 and 950°C, split of 300 reflections due to Cu K α_1 and Cu K α_2 radiations can be observed clearly in Fig. 1.

The phases identified in samples obtained by heating the coprecipitated powders for 1 h at 600–1000°C are depicted in Fig. 2. There was a two-phase CC + FC region at temperatures below about 940°C. At 600°C, the CC and FC phases coexisted from 35 to 80 mol% Fe₂O₃ compositional region [4]. At 900°C, the compositional region of CC + FC mixture was about 40 to 70 mol% Fe₂O₃. The apparent critical point for the

Figure 1 XRD patterns of samples with equimolar CrFeO3 composition heat-treated at various temperatures. \bigcirc , \bigtriangledown and \checkmark represent 300 peaks of single corundum phase, Cr2O3-rich corundum (CC) phase and Fe2O3rich corundum (FC) phase, respectively.

Figure 2 Metastable phase relation of the Cr₂O₃-Fe₂O₃ system obtained by heating the coprecipitated powders for 1 h at each temperature. Dashed line denotes the phase boundary between single corundum phase and two-phase regions. \bigcirc single corundum phase, \triangle two-phase (CC + FC).

two-phase region was estimated to be about 55 mol% $Fe_2O_3, 935 \pm 5^{\circ}C.$

3.2. Phase equilibria

Phase equilibria of 1:1 composition were studied by heating the coprecipitated powders at 600, 800 and 900°C for 1-1000 h. The XRD profiles of the samples obtained by heating the as-coprecipitated powders at 900°C for 1, 10 and 20 h showed both 300 reflection peaks of CC Phase (\bigtriangledown in Fig. 3a) and FC phase ($\mathbf{\nabla}$ in Fig. 3a), while the sample for 40 h exhibited only a single peak (0 in Fig. 3a) indicating the formation of a single corundum phase. The samples heated at 800° C for 1, 100 and 400 h were CC + FC phases, while that for 1000 h at 800°C was a single corundum phase (Fig. 3b). The samples heated at 600°C for 1–1000 h were CC + FC phases (Fig. 3c).

The d-spacings of 300 reflections, d₃₀₀, of CC and FC solid solutions approached each other with an increase of the heating time at 600, 800 and 900°C (Fig. 4). It

Figure 3 XRD patterns of samples with CrFeO3 composition heattreated for 1-1000 h at temperatures. (a) 900° C. (b) 800° C and (c) 600° C. $\bigcirc, \bigtriangledown$ and \checkmark show the same symbols as those in Fig. 1.

1h

Figure 4 Dependence of d-spacing, d₃₀₀, of the corundum structure in samples with CrFeO₃ composition on holding time at 600, 800 and 900°C. \bigcirc , \bigtriangledown and \checkmark represent d₃₀₀-values of single corundum phase, CC phase and FC phase, respectively.

took 40 and 1000 h to form the single phase at 900 and 800°C, respectively. In samples heated at 600°C, the d₃₀₀-value of CC phase increased, while that of FC phase decreased with an increase of the heating time (Fig. 4). Then, it is expected that a single corundum phase will be obtained in the sample heat-treated longer than 1000 h at 600°C. Moreover, in the homogeneous sample obtained by heating the sol-gel-derived powders up to 600°C, a single solid-solution phase was found at 1:1 composition [6]; this result supported the existence of a single corundum phase at 600°C. From these results, the equilibrium state of 1:1 composition is considered to be a single phase of the corundum solid solution at 600–900°C. The d₃₀₀-value of a single corundum phase (\circ in Fig. 4) is larger than the average value of those of CC and FC phases (\bigtriangledown and \checkmark in Fig. 4). This reason is not clear at present.

We have obtained a phase relation of the Cr₂O₃- Fe_2O_3 system with an CC + FC two-phase region below about 940°C (Fig. 2). However, the two-phase coexistence is not stable but metastable at 1:1 composition. In fact, the stable phase was confirmed to be a single corundum solid-solution phase (Figs 3 and 4). Thus, Fig. 2 is not an equilibrium phase diagram with miscibility gap but a metastable phase relation. It is

Figure 5 FT-IR spectra of powders with CrFeO₃ composition heat-treated at various temperatures.

suggested that the two-phase CC + FC coexistence in the earlier works [3, 4, 7] was in the metastable state.

3.3. FT-IR spectra

FT-IR spectra of the powders with 1:1 composition heat-treated for 1 h at 300. 800 and 950°C are revealed in Fig. 5. Samples heated at 300°C were found to be amorphous oxides in a previous paper [4]. In the FT-IR spectrum of amorphous oxides (Fig. 5a), very broad bands with transmittance minima at 410, 505, 563 and 610 cm⁻¹ were observed. In the FT-IR spectrum of two-phase CC + FC mixture (Fig. 5b), broad bands at 410, 572 and 616 cm⁻¹ are attributed to CC phase [3, 7], and a broad band at 572 cm⁻¹ and a shoulder at 510 cm⁻¹ are attributed to FC phase [3, 7]. In oxides with single corundum phase (Fig. 5c), broad bands were observed at 607 and 539 cm⁻¹, which were similar to

the results of other researchers [5, 7]. The positions for transmittance minima in the FT-IR spectrum of amorphous oxides are close to those of two-phase CC + FC mixture but different from those of single corundum phase. Then, there is a possibility that the coprecipitated powders have some inhomogeneity. This inhomogeneity may cause the formation of metastable two-phase mixture during heating the as-coprecipitated powders.

4. Conclusion

(1) Metastable phase relation in the Cr_2O_3 -Fe₂O₃ system was studied by identifying the existing phases in the samples obtained by heating the coprecipitated powders for 1 h at 600–1000°C. There was a metastable two-phase region of Cr_2O_3 -rich and Fe₂O₃-rich corundum phases below about 940°C.

(2) Equilibrium state of 1:1 composition in the temperature range from 600 to 900°C was considered to be a single phase of the corundum solid solution.

References

- 1. A. MUAN and S. SOMIYA, J. Amer. Ceram. Soc. 43 (1960) 207.
- 2. A. A. FOTIEV, L. L. SURAT and A. I. TRETYAKOV, Russ. J. Inorg. Chem. (Engl. Trans.) 26 (1981) 739.
- 3. S. MUSIC, S. POPOVIC and M. RISTIC, J. Mater. Sci. 28 (1993) 632.
- 4. Y. MURAKAMI, A. SAWATA and Y. TSURU, *ibid*. **34**(1999) 951.
- P. TSOKOV, V. B. BLASKOV, D. KLISSURSKI and I. TSOLOVSKI, *ibid.* 28 (1993) 184.
- 6. A. K. BHATTACHARYA, A. HARTRDGE, K. K. MALLICK, C. K. MAJUMDAR, D. DAS and S. N. CHITALAPUDI, *ibid.* 32 (1997) 557.
- S. MUSIC, M. LENGLET, S. POPOVIC, B. HANNOYER,
 I. CZAKO-NAGY, M. RISTIC, D. BALZAR and F. GASHI, *ibid.* 31 (1996) 4067.
- 8. K. F. McCARTY and D. R. BOEHME, J. Solid State Chem. 79 (1989) 19.

Received 1 May 2002 and accepted 3 April 2003